login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: A(x) = sin(-1) + Sum_{n>=0} sin(x^n) * real( (x^n + i)^n ) / n!, an even function, showing only the coefficients of x^(2*n)/(2*n)! in A(x) for n >= 1.
2

%I #29 Jul 12 2019 17:43:14

%S 1,-3,65,-7,-166311,-3326411,250810573,-15,-70140643372783,

%T -16050395192832019,1253057168563221,489854682254665727977,

%U -4242091290877439975,-567128617209289175040000027,-469414018487906631382763519971,-31,-99189110152385088675839967,60136002178464962241806622916607999965,655685669998967370706944000037,-195445976621261878742262620176483614720000039

%N E.g.f.: A(x) = sin(-1) + Sum_{n>=0} sin(x^n) * real( (x^n + i)^n ) / n!, an even function, showing only the coefficients of x^(2*n)/(2*n)! in A(x) for n >= 1.

%C More generally, the following sums are equal:

%C (1) sinh(-p*r) + Sum_{n>=0} sinh(p*q^n*r) * ((q^n + p)^n + (q^n - p)^n)/2 * r^n/n!,

%C (2) sinh(-p*r) + Sum_{n>=0} cosh(p*q^n*r) * ((q^n + p)^n - (q^n - p)^n)/2 * r^n/n!,

%C under suitable conditions; here, p = i = sqrt(-1), q = x, r = 1.

%C What is the radius of convergence of the e.g.f. A(x) when expanded as a power series in x?

%H Paul D. Hanna, <a href="/A326429/b326429.txt">Table of n, a(n) for n = 1..520</a>

%F E.g.f. A(x) = Sum_{n>=1} a(n)*x^(2*n)/(2*n)! equals the following sums.

%F E.g.f.: sin(-1) + Sum_{n>=0} sin(x^n) * real( (x^n + i)^n ) / n!.

%F E.g.f.: sin(-1) + Sum_{n>=0} cos(x^n) * imag( (x^n + i)^n ) / n!.

%F a(2^n) = 1 - 2^(n+1) for n >= 1.

%e E.g.f.: A(x) = x^2/2! - 3*x^4/4! + 65*x^6/6! - 7*x^8/8! - 166311*x^10/10! - 3326411*x^12/12! + 250810573*x^14/14! - 15*x^16/16! - 70140643372783*x^18/18! - 16050395192832019*x^20/20! + ...

%e such that

%e A(x) = sin(-1) + sin(1)*(1) + sin(x)*(x) + sin(x^2)*(x^4 - 1)/2! + sin(x^3)*(x^9 - 3*x^3)/3! + sin(x^4)*(x^16 - 6*x^8 + 1)/4! + sin(x^5)*(x^25 - 10*x^15 + 5*x^5)/5! + sin(x^6)*(x^36 - 15*x^24 + 15*x^12 - 1)/6! + sin(x^7)*(x^49 - 21*x^35 + 35*x^21 - 7*x^7)/7! + sin(x^8)*(x^64 - 28*x^48 + 70*x^32 - 28*x^16 + 1)/8! + ...

%e also

%e A(x) = sin(-1) + cos(1)*(0) + cos(x)*(1) + cos(x^2)*(2*x^2)/2! + cos(x^3)*(3*x^6 - 1)/3! + cos(x^4)*(4*x^12 - 4*x^4)/4! + cos(x^5)*(5*x^20 - 10*x^10 + 1)/5! + cos(x^6)*(6*x^30 - 20*x^18 + 6*x^6)/6! + cos(x^7)*(7*x^42 - 35*x^28 + 21*x^14 - 1)/7! + cos(x^8)*(8*x^56 - 56*x^40 + 56*x^24 - 8*x^8)/8! + ...

%e COEFFICIENTS OF x^(2^n) IN A(x).

%e The coefficients of x^(2^n)/(2^n)! in e.g.f. A(x), starting with n = 1, begin:

%e [1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, ...].

%e RELATED POLYNOMIALS.

%e The polynomials real( (x^n + i)^n ) begin:

%e n=0: 1,

%e n=1: x,

%e n=2: x^4 - 1,

%e n=3: x^9 - 3*x^3,

%e n=4: x^16 - 6*x^8 + 1,

%e n=5: x^25 - 10*x^15 + 5*x^5,

%e n=6: x^36 - 15*x^24 + 15*x^12 - 1,

%e n=7: x^49 - 21*x^35 + 35*x^21 - 7*x^7,

%e n=8: x^64 - 28*x^48 + 70*x^32 - 28*x^16 + 1,

%e ...

%e The polynomials imag( (x^n + i)^n ) begin:

%e n=0: 0,

%e n=1: 1,

%e n=2: 2*x^2,

%e n=3: 3*x^6 - 1,

%e n=4: 4*x^12 - 4*x^4,

%e n=5: 5*x^20 - 10*x^10 + 1,

%e n=6: 6*x^30 - 20*x^18 + 6*x^6,

%e n=7: 7*x^42 - 35*x^28 + 21*x^14 - 1,

%e n=8: 8*x^56 - 56*x^40 + 56*x^24 - 8*x^8,

%e ...

%e RELATED SERIES.

%e At x = 1/2, we have

%e A(1/2) = sin(-1) + Sum_{n>=0} sin(1/2^n) * real( (1/2^n + i)^n ) / n!, also,

%e A(1/2) = sin(-1) + Sum_{n>=0} cos(1/2^n) * imag( (1/2^n + i)^n ) / n!,

%e where A(1/2) = 0.11855108754295937931093066450327494094096154528452247568757943...

%o (PARI) {a(n) = my(A = sum(m=1,2*n+1, sin(x^m +x*O(x^(2*n))) * real( (x^m + I)^m ) / m! )); (2*n)!*polcoeff(A,2*n)}

%o for(n=1,25,print1(a(n),", "))

%Y Cf. A326425.

%K sign

%O 1,2

%A _Paul D. Hanna_, Jul 04 2019