login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275100
Number of set partitions of [3*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
2
1, 5, 16, 64, 298, 1540, 8506, 48844, 286498, 1699300, 10136746, 60643324, 363328498, 2178376660, 13065476986, 78378513004, 470228031298, 2821239047620, 16927046865226, 101561118929884, 609363226794898, 3656168900416180, 21936982021437466, 131621797985445964
OFFSET
0,2
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
G.f.: -(21*x^3-7*x^2-5*x+1)/((x-1)*(6*x-1)*(3*x-1)).
MATHEMATICA
CoefficientList[Series[-(21x^3-7x^2-5x+1)/((x-1)(6x-1)(3x-1)), {x, 0, 30}], x] (* Harvey P. Dale, Dec 15 2018 *)
CROSSREFS
Row n=3 of A275043.
Sequence in context: A365907 A034532 A092497 * A301958 A349568 A026525
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 16 2016
STATUS
approved