Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:44:48
%S 1,0,-31,-242,-1023,-3124,-7775,-16806,-32767,-59048,-99999,-161050,
%T -248831,-371292,-537823,-759374,-1048575,-1419856,-1889567,-2476098,
%U -3199999,-4084100,-5153631,-6436342,-7962623,-9765624,-11881375,-14348906,-17210367,-20511148
%N a(n) = 1 - n^5.
%H Vincenzo Librandi, <a href="/A024003/b024003.txt">Table of n, a(n) for n = 0..555</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _G. C. Greubel_, May 11 2017: (Start)
%F G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.
%F E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)
%t 1-Range[0,50]^5 (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2011 *)
%t CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* _G. C. Greubel_, May 11 2017 *)
%t LinearRecurrence[{6,-15,20,-15,6,-1},{1,0,-31,-242,-1023,-3124},30] (* _Harvey P. Dale_, May 18 2019 *)
%o (Magma) [1-n^5: n in [0..50]]; // _Vincenzo Librandi_, Apr 29 2011
%o (PARI) x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ _G. C. Greubel_, May 11 2017
%Y Cf. A024049.
%K sign,easy
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Harvey P. Dale_, Feb 22 2016