OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
FORMULA
G.f.: Sum_{k>=1} k^8*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (127*2^(8*e+1)+1)/255, and a(p^e) = (p^(8*e+8) - 1)/(p^8 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = 85*zeta(9)/768 = 0.110899... . (End)
MATHEMATICA
Table[Total[(-1)^(n/#+1) #^8&/@Divisors[n]], {n, 30}] (* Harvey P. Dale, May 05 2021 *)
f[p_, e_] := (p^(8*e + 8) - 1)/(p^8 - 1); f[2, e_] := (127*2^(8*e + 1) + 1)/255; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
PROG
(PARI) apply( A321553(n)=sumdiv(n, d, (-1)^(n\d-1)*d^8), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved