login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339606
Decimal expansion of Sum_{k>=0} (zeta(3*k+2)-1).
10
6, 8, 6, 5, 0, 3, 3, 4, 2, 3, 3, 8, 6, 2, 3, 8, 8, 5, 9, 6, 4, 6, 0, 5, 2, 1, 2, 1, 8, 6, 8, 5, 4, 7, 5, 2, 1, 8, 2, 2, 3, 2, 6, 9, 9, 2, 1, 9, 6, 3, 6, 1, 8, 8, 4, 5, 8, 6, 3, 4, 4, 1, 4, 9, 2, 8, 8, 5, 6, 1, 4, 9, 9, 4, 5, 9, 7, 4, 1, 3, 1, 9, 4, 2, 1, 8, 2, 5, 6, 1, 1, 8, 2, 1, 2, 0, 7, 1, 4, 0, 3, 6, 3, 9, 9
OFFSET
0,1
FORMULA
Equals Sum_{k>=1} 1/(k^3 + 1).
Equals -1/3 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is digamma function, gamma is Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/3 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 1 - A339605 - A339604.
Equals 1/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(3*k)-1). - Amiram Eldar, Jan 07 2024
EXAMPLE
0.6865033423386238859646...
MAPLE
evalf(Re(sum(1/(k^3+1), k=1..infinity)), 120); # Alois P. Heinz, Dec 12 2020
MATHEMATICA
RealDigits[Chop[N[Sum[Zeta[3 n + 2] - 1, {n, 0, Infinity}], 105]]][[1]]
PROG
(PARI) suminf(k=0, zeta(3*k+2)-1) \\ Michel Marcus, Dec 09 2020
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Dec 09 2020
STATUS
approved