OFFSET
0,1
FORMULA
Equals Sum_{k>=1} 1/(k^3 + 1).
Equals -1/3 + gamma/3 + (1/3)*Re(Psi(1/2 + i*sqrt(3)/2)) + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6, where Psi is digamma function, gamma is Euler-Mascheroni constant (see A001620), and i=sqrt(-1).
Equals -1/3 + gamma/3 - (1/3)*A339135 + 2*log(2)/9 + sqrt(3)*Pi*tanh(sqrt(3)*Pi/2)/6.
Equals 1/2 + Sum_{k>=1} (-1)^(k+1) * (zeta(3*k)-1). - Amiram Eldar, Jan 07 2024
EXAMPLE
0.6865033423386238859646...
MAPLE
evalf(Re(sum(1/(k^3+1), k=1..infinity)), 120); # Alois P. Heinz, Dec 12 2020
MATHEMATICA
RealDigits[Chop[N[Sum[Zeta[3 n + 2] - 1, {n, 0, Infinity}], 105]]][[1]]
PROG
(PARI) suminf(k=0, zeta(3*k+2)-1) \\ Michel Marcus, Dec 09 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Dec 09 2020
STATUS
approved