login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339608
Numbers whose bijective base-2 representation is a Lyndon word.
2
1, 2, 4, 8, 10, 16, 18, 22, 32, 34, 36, 38, 42, 46, 64, 66, 68, 70, 74, 76, 78, 86, 94, 128, 130, 132, 134, 136, 138, 140, 142, 146, 148, 150, 154, 156, 158, 170, 174, 182, 190, 256, 258, 260, 262, 264, 266, 268, 270, 274, 276, 278, 280, 282, 284, 286, 292, 294, 298, 300, 302, 308
OFFSET
1,2
COMMENTS
A Lyndon word is a word which is lexicographically smaller than all its nontrivial rotations.
From the Chen-Fox-Lyndon theorem, every word can be written in a unique way as a concatenation of a nonincreasing sequence of Lyndon words. Since each natural number has a unique string representation in bijective bases, it can also be written exactly one way as a concatenation of these numbers in nonincreasing lexicographic order, in bijective base-2.
FORMULA
Observation: a(n) = 2*A326774(n-1), n >= 2. (At least for the terms from the Data section). - Omar E. Pol, Dec 09 2020
A007931(a(n)) = A102659(n). - Alois P. Heinz, Dec 09 2020
a(n) = A329327(n) - 1. - Harald Korneliussen, Mar 02 2021
EXAMPLE
1 and 2 are in this sequence, since their bijective base-2 representations are also just "1" and "2", and words of just one letter have no nontrivial rotations.
3 is not in this sequence, since written in bijective base-2 it becomes "11", which is equal to its single nontrivial rotation.
108 is not in this sequence, since in bijective base-2 it becomes "212212", which is larger than two of its nontrivial rotations (both equal to "122122"). However, "212212" can be uniquely split into the lexicographically nonincreasing sequence of Lyndon words "2", "122" and "12", corresponding to 2, 10 and 4 in this sequence.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Harald Korneliussen, Dec 09 2020
STATUS
approved