The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339605 Decimal expansion of Sum_{k>=1} (zeta(3*k+1) - 1). 8
 0, 9, 1, 8, 0, 7, 2, 6, 2, 5, 5, 2, 1, 0, 9, 0, 7, 5, 6, 4, 3, 2, 7, 6, 3, 6, 6, 6, 3, 0, 3, 8, 0, 0, 9, 5, 2, 2, 2, 5, 2, 5, 9, 0, 2, 5, 9, 9, 2, 3, 3, 4, 3, 3, 1, 3, 6, 2, 3, 7, 3, 0, 9, 8, 1, 3, 6, 2, 2, 8, 2, 5, 1, 1, 1, 4, 0, 9, 9, 3, 2, 3, 8, 0, 4, 2, 1, 9, 9, 3, 8, 7, 4, 8, 0, 6, 5, 8, 1, 5, 0, 3, 1, 1, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA Equals Sum_{k>=2} (k^5 - 3*k^4 + k^3 - k^2 + k - 1)/(k*(k^6 - 1)). Equals 1/3 - 2*gamma/3 - (2/3)*Re(Psi(1/2 + i*sqrt(3)/2)), where Psi is the digamma function, gamma is the Euler-Mascheroni constant (see A001620), and i=sqrt(-1). Equals 1/3 - 2*gamma/3 + 2*A339135/3 - 4*log(2)/9. Equals 1 - A339604 - A339606. Equals Sum_{k>=2} 1/(k*(k^3 - 1)). - Vaclav Kotesovec, Dec 24 2020 EXAMPLE 0.09180726255210907564327636663... MATHEMATICA Join[{0}, RealDigits[Chop[N[Sum[Zeta[3 n + 1] - 1, {n, 1, Infinity}], 105]]][[1]]] PROG (PARI) suminf(k=1, zeta(3*k+1)-1) \\ Michel Marcus, Dec 09 2020 CROSSREFS Cf. A256919, A338815, A339135, A339529, A339530, A339604, A339606. Sequence in context: A154207 A200101 A084002 * A182494 A065444 A010169 Adjacent sequences:  A339602 A339603 A339604 * A339606 A339607 A339608 KEYWORD nonn,cons AUTHOR Artur Jasinski, Dec 09 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 06:30 EDT 2021. Contains 343814 sequences. (Running on oeis4.)