login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339602 a(n) = (a(n-2) XOR A030101(a(n-1))) + 1, a(0) = 0, a(1) = 1. 1
0, 1, 2, 1, 4, 1, 6, 3, 6, 1, 8, 1, 10, 5, 16, 5, 22, 9, 32, 9, 42, 29, 62, 3, 62, 29, 42, 9, 36, 1, 38, 25, 54, 3, 54, 25, 38, 1, 40, 5, 46, 25, 62, 7, 58, 17, 44, 29, 60, 19, 38, 11, 44, 7, 44, 11, 34, 27, 58, 13, 50, 31, 46, 3, 46, 31, 50, 13, 58, 27, 34 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Is this sequence periodic? The related sequence A114375 was found to be nonperiodic, however the same argument does not hold here as the bitreversal operation used here maps different values onto the same. E.g. 111000 -> 111 111 -> 111. Every time this sequence develops a not yet seen value a(n) = 2^m, the space of combinations increases from (2^(m-1))^2 to (2^m)^2 reducing the probability to hit an already seen pair of values for [a(n-2),a(n-1)].

This sequence contains some palindromic parts. Example a(55)...a(72): 11, 34, 27, 58, 13, 50, 31, 46, 3, 46, 31, 50, 13, 58, 27, 34, 11.

a(n) <> a(n-1). a(2k) = 2m. a(2k+1) = 2m+1.

a(n) = 2^k, k > 0 for each k will exist only once in this sequence, if it is never periodic. In this case the 2^k will be in increasing sequence ordered.

Conjecture: Let p be an odd number, then a(n) = p will be more frequently found in this sequence than a(n) = p+1. (tested for n=0..10^7 with primes > 2, but seems to be true for all odd too).

LINKS

Robert Israel, Table of n, a(n) for n = 0..10000

Thomas Scheuerle, Interesting staircase pattern in this sequence.

EXAMPLE

a(5) = 1 binary: 1; a(6) = 6 binary: 110, binary bitreversed: 11;

so a(7) = binary: (001 XOR 11)+1 = 11 decimal: 3.

MAPLE

bitrev:= proc(n) local L, i;

  L:= convert(n, base, 2);

  add(L[-i]*2^(i-1), i=1..nops(L))

end proc:

A:= Array(0..100):

A[0]:= 0: A[1]:= 1:

for n from 2 to 100 do

  A[n]:= Bits:-Xor(A[n-2], bitrev(A[n-1]))+1

od:

seq(A[i], i=0..100); # Robert Israel, Dec 25 2020

MATHEMATICA

f[n_] := FromDigits[Reverse @ IntegerDigits[n, 2], 2]; a[0] = 0; a[1] = 1; a[n_] := a[n] = BitXor[a[n - 2], f[a[n - 1]]] + 1; Array[a, 100, 0] (* Amiram Eldar, Dec 10 2020 *)

PROG

(MATLAB)

function a = calc_A339602(length)

    % a(0) = 0  not in output of program

    a(1) = 1; % part of definition

    an_2 = 0; % a(0)

    an_1 = a(1);

    for n = 2:length

        an_1_old = an_1;

        an_1 = bitxor(an_2, bitreverse(an_1))+1;

        an_2 = an_1_old;

        a(n) = an_1;

    end

end

function r = bitreverse(k) % A030101(k)

    r = 0;

    m = floor(log2(k))+1;

    for i = 1:m

        r = bitset(r, m-i+1, bitget(k, i));

    end

end

(PARI) f(n) = fromdigits(Vecrev(binary(n)), 2); \\ A030101

lista(nn) = {my(x=0, y=1); print1(x, ", ", y, ", "); for (n=2, nn, z = bitxor(x, f(y)) +1; print1(z, ", "); x = y; y = z; ); } \\ Michel Marcus, Dec 10 2020

CROSSREFS

Cf. A030101, A114375.

Sequence in context: A341857 A292403 A271773 * A277127 A332792 A118275

Adjacent sequences:  A339599 A339600 A339601 * A339603 A339604 A339605

KEYWORD

nonn,base,look

AUTHOR

Thomas Scheuerle, Dec 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 09:02 EDT 2021. Contains 344981 sequences. (Running on oeis4.)