login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114375
a(n) = (a(n-1) XOR a(n-2)) + 1, a(0) = a(1) = 0.
6
0, 0, 1, 2, 4, 7, 4, 4, 1, 6, 8, 15, 8, 8, 1, 10, 12, 7, 12, 12, 1, 14, 16, 31, 16, 16, 1, 18, 20, 7, 20, 20, 1, 22, 24, 15, 24, 24, 1, 26, 28, 7, 28, 28, 1, 30, 32, 63, 32, 32, 1, 34, 36, 7, 36, 36, 1, 38, 40, 15, 40, 40, 1, 42, 44, 7, 44, 44, 1, 46, 48, 31, 48, 48, 1, 50, 52, 7, 52, 52, 1
OFFSET
0,4
COMMENTS
The function moving to the next overlapping pair in the sequence is f:(i,j) = (j, (i XOR j) + 1) is one-to one. This means that the only possible trajectories for the sequence are loops, "lines", and "rays". The inverse is f^{-1}: (i,j) = (i XOR (j-1), i) is defined except when j = 0. Thus the only infinite non-repeating trajectories are those starting with (i,0) for some i. If we define the size of a pair (i,j) to be the largest power of two <= max(i,j). It is trivial to see that the size of f(i,j) is always >= the size of (i,j). Coupled with the fact there are only finitely many pairs with a given size, this means that "line" trajectories are not possible. Any trajectory that goes to a larger size must be part of a ray, so that tracing back will eventually reach zero. - Franklin T. Adams-Watters, Mar 03 2014
LINKS
FORMULA
a(3n)=2n. a(3n+1)=4*floor((n+1)/2). a(6n+2)=1. a(6n+5)=2^(A001511(n+1)+2)-1.
a(3*n + 1) = A168273(n+1). a(3*n - 1) = A074723(n) - 1.- Michael Somos, Mar 03 2014
a(-n) = -a(n) if n == 0 (mod 3), a(-1-n) = -a(n) if n == 1 (mod 3), a(-2-n) = a(n) if n == 2 (mod 3). - Michael Somos, Mar 03 2014
EXAMPLE
G.f. = x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 4*x^6 + 4*x^7 + x^8 + 6*x^9 + 8*x^10 + ...
MATHEMATICA
a[ n_] := If[ n < 0, BitXor[ a[n + 1], a[n + 2] - 1], If[n < 2, 0, 1 + BitXor[ a[n - 1], a[n - 2]]]]; (* Michael Somos, Mar 03 2014 *)
a[ n_] := If[ Mod[n, 3] == 0, 2 n/3, If[ Mod[n, 3] == 1, 4 Quotient[n + 3, 6], If[ n == -1, -1, 2^IntegerExponent[ Fibonacci[n + 1], 2] - 1]]]; (* Michael Somos, Mar 03 2014 *)
nxt[{a_, b_}]:={b, BitXor[a, b]+1}; NestList[nxt, {0, 0}, 80][[All, 1]] (* Harvey P. Dale, Feb 26 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved