login
A277127
a(n) = n - lambda(n), where lambda(n) = A002322(n).
7
0, 1, 1, 2, 1, 4, 1, 6, 3, 6, 1, 10, 1, 8, 11, 12, 1, 12, 1, 16, 15, 12, 1, 22, 5, 14, 9, 22, 1, 26, 1, 24, 23, 18, 23, 30, 1, 20, 27, 36, 1, 36, 1, 34, 33, 24, 1, 44, 7, 30, 35, 40, 1, 36, 35, 50, 39, 30, 1, 56, 1, 32, 57, 48, 53, 56, 1, 52, 47, 58, 1, 66, 1, 38, 55, 58, 47, 66, 1, 76, 27, 42, 1
OFFSET
1,4
COMMENTS
Largest m < n such that b^m == b^n (mod n) for every integer b.
FORMULA
a(p) = 1 for prime p.
a(p^2) = p prime.
a(n) = A051953(n) for n in A033948.
MATHEMATICA
Table[n - CarmichaelLambda@ n, {n, 83}] (* Michael De Vlieger, Oct 01 2016 *)
PROG
(PARI) a(n) = n - lcm(znstar(n)[2]); \\ Altug Alkan, Oct 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Oct 01 2016
EXTENSIONS
More terms from Altug Alkan, Oct 01 2016
STATUS
approved