login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277126
Positive integers n such that 3^n == 7 (mod n).
9
1, 2, 295, 883438, 252027511, 7469046275, 26782373099, 53191768475, 55246802458, 819613658855, 893727887879978
OFFSET
1,2
COMMENTS
No other terms below 10^15. A larger term: 9135884036634915191945452485106476242. - Max Alekseyev, Oct 12 2016
Terms are not divisible by 127 (Alekseyev 2016).
REFERENCES
M. A. Alekseyev. "Problem 4101". Crux Mathematicorum 42:1 (2016), 28.
EXAMPLE
3 == 7 mod 1, so 1 is a term;
9 == 7 mod 2, so 2 is a term.
PROG
(PARI) isok(n) = Mod(3, n)^n == 7; \\ Michel Marcus, Oct 06 2016
CROSSREFS
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), this sequence (k=7), A277274 (k=11).
Sequence in context: A057746 A362517 A132518 * A273198 A359208 A199946
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Oct 06 2016
EXTENSIONS
a(5) from Joerg Arndt, Oct 06 2016
a(6)-a(11) from Max Alekseyev, Oct 12 2016
STATUS
approved