login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277123
Numbers k such that 1 + Sum_{j=1..k} prime(j)^2 is prime.
1
1, 11, 19, 29, 37, 73, 97, 155, 163, 175, 191, 257, 295, 313, 325, 341, 365, 389, 391, 409, 415, 461, 491, 497, 515, 599, 697, 715, 757, 761, 767, 775, 785, 793, 857, 875, 895, 899, 905, 919, 1099, 1109, 1117, 1139, 1151, 1163, 1225, 1271, 1279, 1295, 1309
OFFSET
1,2
LINKS
MATHEMATICA
Position[Accumulate[Prime[Range[2000]]^2]+1, _?PrimeQ]//Flatten (* Harvey P. Dale, Sep 07 2019 *)
PROG
(Python)
import sympy
sum = p = 1
for n in range(1, 3001):
while not sympy.isprime(p): p+=1 # find the n'th prime
sum += p*p
p+=1
if sympy.isprime(sum): print str(n)+', ',
(PARI) lista(nn) = for(n=1, nn, if(isprime(1+sum(i=1, n, prime(i)^2)), print1(n, ", "))); \\ Altug Alkan, Oct 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Sep 30 2016
STATUS
approved