OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..123
FORMULA
a(n) ~ (-1)^n * sqrt(Pi) * 2^(4*n) * n^(4*n + 1/2) / (sqrt(1-c) * exp(4*n) * c^n * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... . - Vaclav Kotesovec, Jun 26 2016
MATHEMATICA
Flatten[{1, Table[(2*n + 1)! * Sum[1/(2*k + 1)*Sum[(-1)^j*Binomial[k, j]*j^(2*n), {j, 0, 2*k}], {k, 0, n}], {n, 1, 10}]}] (* Vaclav Kotesovec, Jun 26 2016 *)
PROG
(Sage)
def T(n, m): return factorial(m*n+1) * sum(1/(m*k+1)*sum((-1)^j*binomial(k, j)* j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2)
print([a(n) for n in (0..12)])
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jun 26 2016
STATUS
approved