login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273198
a(n) = T(n,2) with T(n, m) = (m*n+1)! * Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
3
1, -2, 296, -327984, 1363872384, -15198541159680, 372495898187043840, -17616182020373076940800, 1464370216956293433318604800, -199499758936277018742988067635200, 42181903584776412718275835664105472000, -13251216132203374725100642797337549799424000
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^n * sqrt(Pi) * 2^(4*n) * n^(4*n + 1/2) / (sqrt(1-c) * exp(4*n) * c^n * (2-c)^(n-1)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... . - Vaclav Kotesovec, Jun 26 2016
MATHEMATICA
Flatten[{1, Table[(2*n + 1)! * Sum[1/(2*k + 1)*Sum[(-1)^j*Binomial[k, j]*j^(2*n), {j, 0, 2*k}], {k, 0, n}], {n, 1, 10}]}] (* Vaclav Kotesovec, Jun 26 2016 *)
PROG
(Sage)
def T(n, m): return factorial(m*n+1) * sum(1/(m*k+1)*sum((-1)^j*binomial(k, j)* j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2)
print([a(n) for n in (0..12)])
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jun 26 2016
STATUS
approved