login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273197
a(n) = denominator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
2
1, 3, 15, 105, 15, 1155, 455, 15, 19635, 95095, 2145, 31395, 7735, 2805, 10818885, 50115065, 3315, 596505, 80925845, 3795, 18515805, 221847535, 2211105, 204920500785, 1453336885, 148335, 95055765, 287558635, 27897511785, 397299047145, 5613813089885, 8897205
OFFSET
0,2
COMMENTS
T(n,0) are the natural numbers, T(n,1) the Bernoulli numbers.
MATHEMATICA
Table[Function[{n, m}, If[n == 0, 1, Denominator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 31}] (* Michael De Vlieger, Jun 26 2016 *)
PROG
(Sage)
def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k, j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2).denominator()
print([a(n) for n in (0..31)])
CROSSREFS
Cf. A273196 (numerators).
T(n,0) = A000027(n) for n>=1.
T(n,1) = A027641(n)/A027642(n) for all n>=0.
T(n,1)*(1*n+1)! = A129814(n) for all n>=0.
T(n,2)*(2*n+1)! = A273198(n) for all n>=0.
Sequence in context: A003276 A136092 A338724 * A255427 A181131 A359417
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Jun 26 2016
STATUS
approved