login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273194
a(n) = numerator(R(n,3)), where R(n,d) = (Product_{j prime to d} Pochhammer(j/d, n)) / n!.
4
1, 2, 20, 1120, 30800, 1121120, 152472320, 8277068800, 523524601600, 340290991040000, 27631628472448000, 2491870494969856000, 741331472253532160000, 80177849999112785920000, 9392262428467497779200000, 3554032102932101159649280000, 480238587908700169197608960000
OFFSET
0,2
COMMENTS
Also the numerators of the nonzero coefficients in the expansion of hypergeom([Seq_{k=1..m-1} k/m], [], (x/m)^m) for m = 3.
MAPLE
Hlist := proc(m, size) local H, S;
H := m -> hypergeom([seq(k/m, k=1..m-1)], [], (x/m)^m);
S := m -> series(H(m), x, (m+1)*size);
seq(numer(coeff(S(m), x, m*n)), n=0..size) end:
A273194_list := size -> Hlist(3, size);
# Alternative:
coprimes := n -> select(j -> igcd(j, n) = 1, {$1..n}):
R := (n, d) -> mul(pochhammer(j/d, n), j in coprimes(d)) / n!:
seq(numer(R(n, 3)), n = 0..16); # Peter Luschny, May 20 2021
CROSSREFS
R(n, 1) = A000012 / A000012.
R(n, 2) = A001790 / A046161.
R(n, 3) = (this sequence) / A344402.
Sequence in context: A361297 A015192 A012790 * A013144 A239642 A369679
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Jun 06 2016
STATUS
approved