login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361297
Number of n-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin.
3
1, 2, 20, 996, 108136, 19784060, 5389230384, 2031493901304, 1009373201680848, 638377781979995244, 500510427096797296240, 476433596774288713285352, 541348750963243079098368768, 723928411313545718524263072248, 1125748074023593276830674831519936
OFFSET
0,2
COMMENTS
a(n) is a multiple of 2n for n>=1.
LINKS
FORMULA
a(n) = A361397(n,n).
From Vaclav Kotesovec, Apr 23 2023: (Start)
a(n) ~ c * d^n * n^(2*n), where d = 1.138128465642... and c = 1.72802011936...
a(n) ~ A303503(n). (End)
MAPLE
b:= proc(n, l) option remember; add(add((h-> `if`(n<=
add(v, v=h), 0, `if`(n=1, 1, `if`(h[-1]=0, 0,
b(n-1, h)))))(sort(subsop(i=abs(l[i]+j), l))),
j=[-1, 1]), i=1..nops(l))
end:
a:= n-> `if`(n=0, 1, b(2*n, [0$n])):
seq(a(n), n=0..15);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1)*binomial(n, j)^2, j=0..n))
end:
g:= proc(n, k) option remember; `if` (n<1, -1,
-add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n))
end:
a:= n-> abs(g(n$2)):
seq(a(n), n=0..15);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, Sum[b[n - j, i - 1]*Binomial[n, j]^2, {j, 0, n}]];
g[n_, k_] := g[n, k] = If [n < 1, -1, -Sum[g[n - i, k]*(2i)!* b[i, k]/i!^2, {i, 1, n}]];
a[n_] := Abs[g[n, n]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, May 27 2023, from 2nd Maple program *)
CROSSREFS
Main diagonal of A361397.
Sequence in context: A301945 A158843 A008793 * A015192 A012790 A273194
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Mar 08 2023
STATUS
approved