login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator(R(n,3)), where R(n,d) = (Product_{j prime to d} Pochhammer(j/d, n)) / n!.
4

%I #17 Dec 12 2023 18:39:19

%S 1,2,20,1120,30800,1121120,152472320,8277068800,523524601600,

%T 340290991040000,27631628472448000,2491870494969856000,

%U 741331472253532160000,80177849999112785920000,9392262428467497779200000,3554032102932101159649280000,480238587908700169197608960000

%N a(n) = numerator(R(n,3)), where R(n,d) = (Product_{j prime to d} Pochhammer(j/d, n)) / n!.

%C Also the numerators of the nonzero coefficients in the expansion of hypergeom([Seq_{k=1..m-1} k/m], [], (x/m)^m) for m = 3.

%p Hlist := proc(m,size) local H, S;

%p H := m -> hypergeom([seq(k/m, k=1..m-1)], [], (x/m)^m);

%p S := m -> series(H(m), x, (m+1)*size);

%p seq(numer(coeff(S(m), x, m*n)), n=0..size) end:

%p A273194_list := size -> Hlist(3, size);

%p # Alternative:

%p coprimes := n -> select(j -> igcd(j, n) = 1, {$1..n}):

%p R := (n, d) -> mul(pochhammer(j/d, n), j in coprimes(d)) / n!:

%p seq(numer(R(n, 3)), n = 0..16); # _Peter Luschny_, May 20 2021

%Y R(n, 1) = A000012 / A000012.

%Y R(n, 2) = A001790 / A046161.

%Y R(n, 3) = (this sequence) / A344402.

%Y Cf. A273192, A273193.

%K nonn,frac

%O 0,2

%A _Peter Luschny_, Jun 06 2016