login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273196
a(n) = numerator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
2
1, -1, 37, -6833, 56377, -439772603, 27217772209, -202070742359, 80837575181815013, -155957202651688954367, 1770963292969902374951, -16092436217742770647634507, 2975968726866580246152132993, -963399772945511487665759472653, 3891037048609240492066339458106680163
OFFSET
0,3
COMMENTS
T(n,0) are the natural numbers, T(n,1) the Bernoulli numbers.
MATHEMATICA
Table[Function[{n, m}, If[n == 0, 1, Numerator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 14}] (* Michael De Vlieger, Jun 26 2016 *)
PROG
(Sage)
def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k, j)*j^(m*n) for j in (0..m*k)) for k in (0..n))
def a(n): return T(n, 2).numerator()
print([a(n) for n in (0..14)])
CROSSREFS
Cf. A273197 (denominator), T(n,0) = A000027, T(n,1) = A027641/A027642.
Also T(n,1)*(1*n+1)! = A129814, T(n,2)*(2*n+1)! = A273198.
Sequence in context: A221498 A296687 A297653 * A131272 A219105 A219984
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Jun 26 2016
STATUS
approved