login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).
2

%I #19 Mar 08 2020 10:14:19

%S 1,3,15,105,15,1155,455,15,19635,95095,2145,31395,7735,2805,10818885,

%T 50115065,3315,596505,80925845,3795,18515805,221847535,2211105,

%U 204920500785,1453336885,148335,95055765,287558635,27897511785,397299047145,5613813089885,8897205

%N a(n) = denominator of T(n, 2) with T(n, m) = Sum_{k=0..n}( 1/(m*k+1) * Sum_{j=0..m*k} (-1)^j*C(k,j)*j^(m*n) ).

%C T(n,0) are the natural numbers, T(n,1) the Bernoulli numbers.

%t Table[Function[{n, m}, If[n == 0, 1, Denominator@ Sum[1/(m k + 1) Sum[(-1)^j Binomial[k, j] j^(m n), {j, 0, m k}], {k, 0, n}]]][n, 2], {n, 0, 31}] (* _Michael De Vlieger_, Jun 26 2016 *)

%o (Sage)

%o def T(n, m): return sum(1/(m*k+1)*sum((-1)^j*binomial(k,j)*j^(m*n) for j in (0..m*k)) for k in (0..n))

%o def a(n): return T(n, 2).denominator()

%o print([a(n) for n in (0..31)])

%Y Cf. A273196 (numerators).

%Y T(n,0) = A000027(n) for n>=1.

%Y T(n,1) = A027641(n)/A027642(n) for all n>=0.

%Y T(n,1)*(1*n+1)! = A129814(n) for all n>=0.

%Y T(n,2)*(2*n+1)! = A273198(n) for all n>=0.

%K nonn,frac

%O 0,2

%A _Peter Luschny_, Jun 26 2016