login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277274
Positive integers n such that 3^n == 11 (mod n).
8
1, 2, 1162, 1692934, 3851999, 274422823, 14543645261, 492230729674, 773046873382, 13010754158393, 31446154470014, 583396812890467, 598371102650063
OFFSET
1,2
COMMENTS
No other terms below 10^15. Some larger terms: 38726095838775708310162, 2682806839696008709567739369. - Max Alekseyev, Oct 12 2016
EXAMPLE
3 == 11 mod 1, so 1 is a term.
9 == 11 mod 2, so 2 is a term.
MATHEMATICA
k = 3; lst = {1, 2}; While[k < 12000000001, If[ PowerMod[3, k, k] == 11, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Oct 08 2016 *)
CROSSREFS
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), A276740 (k=5), A277126 (k=7), this sequence (k=11).
Sequence in context: A340290 A119554 A272246 * A036104 A036106 A285691
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Oct 08 2016
EXTENSIONS
a(7)-a(13) from Max Alekseyev, Oct 12 2016
STATUS
approved