|
|
A276740
|
|
Numbers n such that 3^n == 5 (mod n).
|
|
9
|
|
|
1, 2, 4, 76, 418, 1102, 4687, 7637, 139183, 2543923, 1614895738, 9083990938, 23149317409, 497240757797, 4447730232523, 16000967516764, 65262766108619, 141644055557882
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
No other terms below 10^15. Some larger terms: 194995887252090239, 2185052151122686482926861593785262. - Max Alekseyev, Oct 13 2016
|
|
LINKS
|
Table of n, a(n) for n=1..18.
|
|
EXAMPLE
|
3 == 5 (mod 1), so 1 is a term;
9 == 5 (mod 2), so 2 is a term.
|
|
MATHEMATICA
|
Select[Range[10^7], PowerMod[3, #, #] == Mod[5, #] &] (* Michael De Vlieger, Sep 26 2016 *)
|
|
PROG
|
(PARI) isok(n) = Mod(3, n)^n == Mod(5, n); \\ Michel Marcus, Sep 17 2016
(Python)
A276740_list = [1, 2, 4]+[n for n in range(5, 10**6) if pow(3, n, n) == 5] # Chai Wah Wu, Oct 04 2016
|
|
CROSSREFS
|
Cf. A066601.
Solutions to 3^n == k (mod n): A277340 (k=-11), A277289 (k=-7), A277288 (k=-5), A015973 (k=-2), A015949 (k=-1), A067945 (k=1), A276671 (k=2), this sequence (k=5), A277628 (k=6), A277126 (k=7), A277630 (k=8), A277274 (k=11).
Sequence in context: A053550 A018378 A023175 * A006688 A292711 A018389
Adjacent sequences: A276737 A276738 A276739 * A276741 A276742 A276743
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Dmitry Ezhov, Sep 16 2016
|
|
EXTENSIONS
|
a(11)-a(13) from Chai Wah Wu, Oct 05 2016
a(14) from Lars Blomberg, Oct 12 2016
a(15)-a(18) from Max Alekseyev, Oct 13 2016
a(12) was missing Robert G. Wilson v, Oct 19 2016
|
|
STATUS
|
approved
|
|
|
|