login
a(n) = n - lambda(n), where lambda(n) = A002322(n).
7

%I #19 Oct 10 2016 02:47:36

%S 0,1,1,2,1,4,1,6,3,6,1,10,1,8,11,12,1,12,1,16,15,12,1,22,5,14,9,22,1,

%T 26,1,24,23,18,23,30,1,20,27,36,1,36,1,34,33,24,1,44,7,30,35,40,1,36,

%U 35,50,39,30,1,56,1,32,57,48,53,56,1,52,47,58,1,66,1,38,55,58,47,66,1,76,27,42,1

%N a(n) = n - lambda(n), where lambda(n) = A002322(n).

%C Largest m < n such that b^m == b^n (mod n) for every integer b.

%H Altug Alkan, <a href="/A277127/b277127.txt">Table of n, a(n) for n = 1..10000</a>

%F a(p) = 1 for prime p.

%F a(p^2) = p prime.

%F a(n) = A051953(n) for n in A033948.

%t Table[n - CarmichaelLambda@ n, {n, 83}] (* _Michael De Vlieger_, Oct 01 2016 *)

%o (PARI) a(n) = n - lcm(znstar(n)[2]); \\ _Altug Alkan_, Oct 01 2016

%Y Cf. A002322, A033948, A051953, A276976.

%K nonn

%O 1,4

%A _Thomas Ordowski_, Oct 01 2016

%E More terms from _Altug Alkan_, Oct 01 2016