login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131806
Period 4: repeat [0, 2, 4, 6].
0
0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6
OFFSET
1,2
FORMULA
a(n) = 3+(-1)^n+2*(-1)^((2*n+1-(-1)^n)/4).
G.f.: 2*x^2*(1+2*x+3*x^2)/((1-x)*(1+x)*(1+x^2)). a(n) = 2*A010873(n-1). - R. J. Mathar, Jan 15 2008
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>4.
a(n) = 3 + cos(n*Pi) + 2*cos(n*Pi/2) - 2*sin(n*Pi/2) + I*sin(n*Pi). (End)
MAPLE
seq(op([0, 2, 4, 6]), n=1..40); # Wesley Ivan Hurt, Jul 09 2016
MATHEMATICA
PadRight[{}, 100, {0, 2, 4, 6}] (* Wesley Ivan Hurt, Jul 09 2016 *)
PROG
(Magma) &cat [[0, 2, 4, 6]^^30]; // Wesley Ivan Hurt, Jul 09 2016
CROSSREFS
Cf. A010873.
Sequence in context: A128124 A182687 A141062 * A004518 A013670 A121206
KEYWORD
nonn,easy
AUTHOR
Salvatore Gambino (salvatore.gambino(AT)fastwebnet.it), Oct 04 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 15 2008
STATUS
approved