login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131804
Antidiagonal sums of triangular array T: T(j,k) = -(k+1)/2 for odd k, T(j,k) = 0 for k = 0, T(j,k) = j+1-k/2 for even k > 0; 0 <= k <= j.
2
0, 0, -1, -1, 1, 2, 1, 2, 6, 8, 7, 9, 15, 18, 17, 20, 28, 32, 31, 35, 45, 50, 49, 54, 66, 72, 71, 77, 91, 98, 97, 104, 120, 128, 127, 135, 153, 162, 161, 170, 190, 200, 199, 209, 231, 242, 241, 252, 276, 288, 287, 299, 325, 338, 337, 350, 378, 392, 391, 405, 435, 450
OFFSET
0,6
COMMENTS
T is obtained by replacing the values of the second, fourth, sixth, ... column of the triangular array defined in A129819 by the corresponding negative values.
Interleaving of A000384, A001105, A056220 and A014107 (starting at the second term).
Main diagonal of T is in A001057, row sums are in A131805.
FORMULA
a(0) = 0, a(1) = 0, a(2) = -1, a(3) = -1, a(4) = 1, a(5) = 2, a(6) = 1; for n > 6, a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7);
G.f.: x^2*(-1+2*x-x^2+x^3)/((1-x)^3*(1+x^2)^2).
EXAMPLE
First seven rows of T are
[ 0 ],
[ 0, -1 ],
[ 0, -1, 2 ],
[ 0, -1, 3, -2 ],
[ 0, -1, 4, -2, 3 ],
[ 0, -1, 5, -2, 4, -3 ],
[ 0, -1, 6, -2, 5, -3, 4 ]
PROG
(Magma) m:=62; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do for k:=2 to j do if k mod 2 eq 0 then M[j, k]:=-k div 2; else M[j, k]:=j-(k div 2); end if; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ];
(PARI) {for(n=0, 61, r=n%4; k=(n-r)/4; a=if(r==0, k*(2*k-1), if(r==1, 2*k^2, if(r==2, 2*k^2-1, k*(2*k+1)-1))); print1(a, ", "))}
CROSSREFS
Cf. A129819, A000384 (n*(2*n-1)), A001105 (2*n^2), A056220 (2*n^2-1), A014107 (n*(2*n-3)), A001057, A131805.
Sequence in context: A020825 A259992 A110422 * A307519 A254198 A246466
KEYWORD
sign
AUTHOR
Klaus Brockhaus, Jul 18 2007
STATUS
approved