login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259992
Irregular triangle read by rows: T(n,k) = number of Havender tableaux of height 2 with n columns and k empty squares (n >= 0, 0 <= k <= 2*n).
2
1, 1, 2, 1, 2, 6, 8, 4, 1, 5, 20, 36, 38, 21, 6, 1, 14, 70, 160, 220, 202, 116, 40, 8, 1, 42, 252, 700, 1190, 1380, 1152, 670, 260, 65, 10, 1, 132, 924, 3024, 6132, 8610, 8862, 6904, 4012, 1680, 490, 96, 12, 1, 429, 3432, 12936, 30492, 50316, 61656, 58072
OFFSET
0,3
REFERENCES
D. Gouyou-Beauchamps, "Tableaux de Havender standards," in S. Brlek, editor, Parallélisme: Modèles et Complexité. LACIM, Université du Québec à Montréal, 1989.
LINKS
D. Gouyou-Beauchamps, Tableaux de Havender standards, Parallélisme: Modèles et Complexité. LACIM, Université du Québec à Montréal, 1989. (Annotated scanned copy)
FORMULA
T(n,k) = v(2 * n, 2 * n - k) where v(p, k) = Sum_{j=max(0, k-p)..floor(k/2)} (2*k-2*j)! * p! / ((p - k + j)! * (k-2*j)! * (j+1)! * ((k-j)!)^2). - Sean A. Irvine, Dec 28 2017
EXAMPLE
Triangle begins:
: 1;
: 1, 2, 1;
: 2, 6, 8, 4, 1;
: 5, 20, 36, 38, 21, 6, 1;
: 14, 70, 160, 220, 202, 116, 40, 8, 1;
: 42, 252, 700, 1190, 1380, 1152, 670, 260, 65, 10, 1;
: 132, 924, 3024, 6132, 8610, 8862, 6904, 4012, 1680, 490, 96, 12, 1;
: ...
CROSSREFS
Row sums are A007345.
Column k=0 gives A000108.
Sequence in context: A059587 A070236 A020825 * A110422 A131804 A307519
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jul 13 2015
STATUS
approved