login
A300268
Number of solutions to 1 +- 4 +- 9 +- ... +- n^2 == 0 (mod n).
3
1, 0, 2, 4, 6, 0, 10, 48, 32, 0, 94, 344, 370, 0, 1268, 4608, 3856, 0, 13798, 55960, 50090, 0, 182362, 721952, 690496, 0, 2485592, 9586984, 9256746, 0, 34636834, 135335936, 130150588, 0, 493452348, 1908875264, 1857293524, 0, 7049188508, 27603824928
OFFSET
1,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..3334 (terms 1..1000 from Alois P. Heinz)
EXAMPLE
Solutions for n = 7:
-------------------------------
1 +4 +9 +16 +25 +36 +49 = 140.
1 +4 +9 +16 +25 +36 -49 = 42.
1 +4 +9 -16 -25 -36 +49 = -14.
1 +4 +9 -16 -25 -36 -49 = -112.
1 +4 -9 +16 -25 -36 +49 = 0.
1 +4 -9 +16 -25 -36 -49 = -98.
1 -4 +9 -16 +25 -36 +49 = 28.
1 -4 +9 -16 +25 -36 -49 = -70.
1 -4 -9 +16 +25 -36 +49 = 42.
1 -4 -9 +16 +25 -36 -49 = -56.
MAPLE
b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0),
add(b(irem(n+j, m), i-1, m), j=[i^2, m-i^2]))
end:
a:= n-> b(0, n-1, n):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 01 2018
MATHEMATICA
b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0],
Sum[b[Mod[n + j, m], i - 1, m], {j, {i^2, m - i^2}}]];
a[n_] := b[0, n - 1, n];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
PROG
(Ruby)
def A(n)
ary = [1] + Array.new(n - 1, 0)
(1..n).each{|i|
i2 = 2 * i * i
a = ary.clone
(0..n - 1).each{|j| a[(j + i2) % n] += ary[j]}
ary = a
}
ary[(n * (n + 1) * (2 * n + 1) / 6) % n] / 2
end
def A300268(n)
(1..n).map{|i| A(i)}
end
p A300268(100)
(PARI) a(n) = my (v=vector(n, k, k==1)); for (i=2, n, v = vector(n, k, v[1 + (k-i^2)%n] + v[1 + (k+i^2)%n])); v[1] \\ Rémy Sigrist, Mar 01 2018
CROSSREFS
Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): A300190 (k=1), this sequence (k=2), A300269 (k=3).
Sequence in context: A013670 A121206 A062004 * A009285 A013082 A352639
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2018
STATUS
approved