login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300190
Number of solutions to 1 +- 2 +- 3 +- ... +- n == 0 (mod n).
9
1, 0, 2, 4, 4, 0, 10, 32, 30, 0, 94, 344, 316, 0, 1096, 4096, 3856, 0, 13798, 52432, 49940, 0, 182362, 699072, 671092, 0, 2485534, 9586984, 9256396, 0, 34636834, 134217728, 130150588, 0, 490853416, 1908874584, 1857283156, 0, 7048151672, 27487790720
OFFSET
1,3
COMMENTS
Apparently a(2*n + 1) = A053656(2*n + 1) for n >= 0. - Georg Fischer, Mar 26 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..3334 (terms 1..1000 from Alois P. Heinz)
FORMULA
a(4*n+1) = A000016(n), a(4*n+2) = 0, a(4*n+3) = A000016(n), a(4*n+4) = 2 * A000016(n) for n > 0.
a(2^n) = 2^A000325(n) for n > 1.
EXAMPLE
Solutions for n = 7:
--------------------------
1 +2 +3 +4 +5 +6 +7 = 28.
1 +2 +3 +4 +5 +6 -7 = 14.
1 +2 -3 +4 -5 -6 +7 = 0.
1 +2 -3 +4 -5 -6 -7 = -14.
1 +2 -3 -4 +5 +6 +7 = 14.
1 +2 -3 -4 +5 +6 -7 = 0.
1 -2 +3 +4 -5 +6 +7 = 14.
1 -2 +3 +4 -5 +6 -7 = 0.
1 -2 -3 -4 -5 +6 +7 = 0.
1 -2 -3 -4 -5 +6 -7 = -14.
MAPLE
b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0),
add(b(irem(n+j, m), i-1, m), j=[i, m-i]))
end:
a:= n-> b(0, n-1, n):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 01 2018
MATHEMATICA
b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0], Sum[b[Mod[n + j, m], i - 1, m], {j, {i, m - i}}]];
a[n_] := b[0, n - 1, n];
Array[a, 60] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
PROG
(Ruby)
def A(n)
ary = [1] + Array.new(n - 1, 0)
(1..n).each{|i|
i1 = 2 * i
a = ary.clone
(0..n - 1).each{|j| a[(j + i1) % n] += ary[j]}
ary = a
}
ary[(n * (n + 1) / 2) % n] / 2
end
def A300190(n)
(1..n).map{|i| A(i)}
end
p A300190(100)
CROSSREFS
Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): this sequence (k=1), A300268 (k=2), A300269 (k=3).
Cf. A016825 (4n+2).
Sequence in context: A118434 A090132 A199051 * A099211 A261761 A300269
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 28 2018
STATUS
approved