login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300269
Number of solutions to 1 +- 8 +- 27 +- ... +- n^3 == 0 (mod n).
3
1, 0, 2, 4, 4, 0, 20, 48, 80, 0, 94, 344, 424, 0, 1096, 4864, 3856, 0, 16444, 52432, 65248, 0, 182362, 720928, 671104, 0, 4152320, 11156656, 9256396, 0, 34636834, 135397376, 130150588, 0, 533834992, 2773200896, 1857304312, 0, 7065319328, 27541477824, 26817356776
OFFSET
1,3
LINKS
EXAMPLE
Solutions for n = 7:
-----------------------------------
1 +8 +27 +64 +125 +216 +343 = 784.
1 +8 +27 +64 +125 +216 -343 = 98.
1 +8 +27 -64 +125 -216 +343 = 224.
1 +8 +27 -64 +125 -216 -343 = -462.
1 +8 +27 -64 -125 +216 +343 = 406.
1 +8 +27 -64 -125 +216 -343 = -280.
1 +8 -27 -64 +125 +216 +343 = 602.
1 +8 -27 -64 +125 +216 -343 = -84.
1 -8 +27 +64 +125 -216 +343 = 336.
1 -8 +27 +64 +125 -216 -343 = -350.
1 -8 +27 +64 -125 +216 +343 = 518.
1 -8 +27 +64 -125 +216 -343 = -168.
1 -8 +27 -64 -125 -216 +343 = -42.
1 -8 +27 -64 -125 -216 -343 = -728.
1 -8 -27 +64 +125 +216 +343 = 714.
1 -8 -27 +64 +125 +216 -343 = 28.
1 -8 -27 -64 +125 -216 +343 = 154.
1 -8 -27 -64 +125 -216 -343 = -532.
1 -8 -27 -64 -125 +216 +343 = 336.
1 -8 -27 -64 -125 +216 -343 = -350.
MAPLE
b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0),
add(b(irem(n+j, m), i-1, m), j=[i^3, m-i^3]))
end:
a:= n-> b(0, n-1, n):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 01 2018
MATHEMATICA
b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0],
Sum[b[Mod[n + j, m], i - 1, m], {j, {i^3, m - i^3}}]];
a[n_] := b[0, n - 1, n];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
PROG
(Ruby)
def A(n)
ary = [1] + Array.new(n - 1, 0)
(1..n).each{|i|
i3 = 2 * i * i * i
a = ary.clone
(0..n - 1).each{|j| a[(j + i3) % n] += ary[j]}
ary = a
}
ary[((n * (n + 1)) ** 2 / 4) % n] / 2
end
def A300269(n)
(1..n).map{|i| A(i)}
end
p A300269(100)
(PARI) a(n) = my (v=vector(n, k, k==1)); for (i=2, n, v = vector(n, k, v[1 + (k-i^3)%n] + v[1 + (k+i^3)%n])); v[1] \\ Rémy Sigrist, Mar 01 2018
CROSSREFS
Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): A300190 (k=1), A300268 (k=2), this sequence (k=3).
Sequence in context: A300190 A099211 A261761 * A094225 A358641 A057277
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2018
EXTENSIONS
More terms from Alois P. Heinz, Mar 01 2018
STATUS
approved