login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300307
Number of solutions to 1 +- 3 +- 6 +- ... +- n*(n+1)/2 == 0 mod n.
4
1, 2, 0, 4, 4, 16, 12, 32, 20, 112, 88, 384, 308, 1264, 1056, 4096, 3852, 15120, 13820, 52608, 49824, 190848, 182356, 704512, 671540, 2582128, 2475220, 9615744, 9256428, 35868672, 34636840, 134217728, 130021392, 505292976, 491156304, 1909836416, 1857282536
OFFSET
1,2
LINKS
FORMULA
a(2^n) = 2^A000325(n) for n>0 (conjectured).
EXAMPLE
Solutions for n = 7:
------------------------------
1 +3 +6 +10 +15 +21 +28 = 84.
1 +3 +6 +10 +15 +21 -28 = 28.
1 +3 +6 +10 +15 -21 +28 = 42.
1 +3 +6 +10 +15 -21 -28 = -14.
1 +3 -6 +10 -15 +21 +28 = 42.
1 +3 -6 +10 -15 +21 -28 = -14.
1 +3 -6 +10 -15 -21 +28 = 0.
1 +3 -6 +10 -15 -21 -28 = -56.
1 -3 +6 -10 -15 +21 +28 = 28.
1 -3 +6 -10 -15 +21 -28 = -28.
1 -3 +6 -10 -15 -21 +28 = -14.
1 -3 +6 -10 -15 -21 -28 = -70.
PROG
(Ruby)
def A(n)
ary = [1] + Array.new(n - 1, 0)
(1..n).each{|i|
it = i * (i + 1)
a = ary.clone
(0..n - 1).each{|j| a[(j + it) % n] += ary[j]}
ary = a
}
ary[(n * (n + 1) * (n + 2) / 6) % n] / 2
end
def A300307(n)
(1..n).map{|i| A(i)}
end
p A300307(100)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 02 2018
STATUS
approved