login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300310
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
1
8, 29, 45, 211, 1537, 8135, 41485, 237494, 1335377, 7220188, 39898274, 222289040, 1223973190, 6747658497, 37357592557, 206400784559, 1139340023954, 6296448768518, 34794231928876, 192191214782093, 1061796400589644
OFFSET
1,1
COMMENTS
Column 4 of A300314.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) -18*a(n-2) +70*a(n-3) -322*a(n-4) +361*a(n-5) -313*a(n-6) +3440*a(n-7) -10094*a(n-8) +16988*a(n-9) -28221*a(n-10) +73982*a(n-11) -199678*a(n-12) +479468*a(n-13) -793158*a(n-14) +925262*a(n-15) -1954164*a(n-16) +4127614*a(n-17) -6407292*a(n-18) +8175969*a(n-19) -8673631*a(n-20) +12171733*a(n-21) -16358559*a(n-22) +19137438*a(n-23) -16516504*a(n-24) +10215879*a(n-25) -19973774*a(n-26) +20952359*a(n-27) -11874866*a(n-28) +6728183*a(n-29) -5330656*a(n-30) +8897807*a(n-31) -7767199*a(n-32) -2301042*a(n-33) +21535378*a(n-34) -18718181*a(n-35) +19792800*a(n-36) -24230147*a(n-37) +24223480*a(n-38) -20874941*a(n-39) +6026189*a(n-40) -619358*a(n-41) -5800306*a(n-42) +3505724*a(n-43) +471730*a(n-44) +1046928*a(n-45) +577343*a(n-46) +176833*a(n-47) -194370*a(n-48) -207100*a(n-49) -27997*a(n-50) -10625*a(n-51) +7207*a(n-52) +5466*a(n-53) +194*a(n-54) +204*a(n-55) for n>59
EXAMPLE
Some solutions for n=5
..0..0..1..0. .0..1..1..1. .0..1..0..0. .0..1..0..0. .0..1..0..1
..1..0..1..1. .1..1..1..0. .0..1..1..0. .1..0..1..1. .1..1..0..0
..0..0..0..0. .0..0..0..1. .0..1..1..1. .1..0..0..0. .1..1..1..1
..0..0..1..0. .1..0..0..1. .1..0..1..1. .0..1..0..1. .0..1..1..0
..1..0..1..1. .0..1..0..1. .1..0..1..0. .0..1..0..0. .1..0..0..1
CROSSREFS
Cf. A300314.
Sequence in context: A299011 A299802 A299678 * A171442 A341402 A247541
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 02 2018
STATUS
approved