%I #31 May 02 2020 04:19:48
%S 1,0,0,0,0,6,1,2,4,8,1,3,5,0,5,8,7,0,4,8,2,9,2,5,8,5,4,5,1,0,5,1,3,5,
%T 3,3,3,7,4,7,4,8,1,6,9,6,1,6,9,1,5,4,5,4,9,4,8,2,7,5,5,2,0,2,2,5,2,8,
%U 6,2,9,4,1,0,2,3,1,7,7,4,2,0,8,7,6,6,5,9,7,8,2,9,7,1,9,9,8,4,6
%N Decimal expansion of zeta(14).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%F zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - _Mikael Aaltonen_, Feb 20 2015
%F zeta(14) = 2/18243225*Pi^14 (see A002432). - _Rick L. Shepherd_, May 30 2016
%F zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - _Vaclav Kotesovec_, May 02 2020
%e 1.0000612481350587048292585451051353337474816961691545494827552022528629...
%t RealDigits[Zeta[14],10,120][[1]] (* _Harvey P. Dale_, Dec 19 2014 *)
%o (PARI) zeta(14) \\ _Michel Marcus_, Feb 20 2015
%K nonn,cons
%O 1,6
%A _N. J. A. Sloane_