login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of zeta(17).
16

%I #27 May 02 2020 04:21:55

%S 1,0,0,0,0,0,7,6,3,7,1,9,7,6,3,7,8,9,9,7,6,2,2,7,3,6,0,0,2,9,3,5,6,3,

%T 0,2,9,2,1,3,0,8,8,2,4,9,0,9,0,2,6,2,6,7,9,0,9,5,3,7,9,8,4,3,9,7,2,9,

%U 3,5,6,4,3,2,9,0,2,8,2,4,5,9,3,4,2,0,8,1,7,3,8,6,3,6,9,1,6,6,7

%N Decimal expansion of zeta(17).

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 811.

%F From _Peter Bala_, Dec 04 2013: (Start)

%F Definition: zeta(17) = sum {n >= 1} 1/n^17.

%F zeta(17) = 2^17/(2^17 - 1)*( sum {n even} n^11*p(n)*p(1/n)/(n^2 - 1)^18 ), where p(n) = n^8 + 36*n^6 + 126*n^4 + 84*n^2 + 9. Cf. A013663, A013667 and A013671.

%F (End)

%F zeta(17) = Sum_{n >= 1} (A010052(n)/n^(17/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(17/2) ). - _Mikael Aaltonen_, Feb 23 2015

%F zeta(17) = Product_{k>=1} 1/(1 - 1/prime(k)^17). - _Vaclav Kotesovec_, May 02 2020

%e 1.0000076371976378997622736002935630292130882490902626790953798439729356...

%t RealDigits[Zeta[17], 10, 75][[1]] (* _Vincenzo Librandi_, Feb 24 2015 *)

%o (PARI) zeta(17) \\ _Charles R Greathouse IV_, Dec 04 2013

%Y Cf. A013663, A013667, A013669, A013671, A013675, A013677, A010057.

%K cons,nonn

%O 1,7

%A _N. J. A. Sloane_