The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057528 5th level factorials: product of first n 4th level factorials. 5
 1, 1, 2, 96, 31850496, 2524286414780230533120, 1189172215782988266980141580906985588465965465600000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n. LINKS FORMULA a(n) =a(n-1)*A057527(n) =Product[i^A000292(n-i+4)] over 1<=i<=n. a(n) ~ exp(25/144 - 109*n/144 - 35*n^2/24 - 379*n^3/432 - 125*n^4/576 - 137*n^5/7200 + (35 + 30*n + 6*n^2)*Zeta(3)/(96*Pi^2) - Zeta(5)/(32*Pi^4) + (5+2*n)*Zeta'(-3)/12) * n^((5+2*n)*(19/288 + 25*n/144 + 5*n^2/36 + n^3/24 + n^4/240)) * (2*Pi)^((n+1)*(n+2)*(n+3)*(n+4)/48) / A^((5+2*n)*(5 + 5*n + n^2)/12), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-3) = A259068 = 0.00537857635777430114441697421... and A = A074962 = 1.282427129100622636875... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 24 2015 MATHEMATICA Table[Product[i^Binomial[n-i+4, 4], {i, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Jul 24 2015 *) CROSSREFS Cf. A000142, A000178, A055462, A057527, A260404 for first, second, third, fourth and sixth level factorials. Sequence in context: A168442 A091810 A165642 * A224986 A164335 A132206 Adjacent sequences:  A057525 A057526 A057527 * A057529 A057530 A057531 KEYWORD easy,nonn AUTHOR Henry Bottomley, Sep 02 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 22:16 EST 2020. Contains 331177 sequences. (Running on oeis4.)