login
A057528
5th level factorials: product of first n 4th level factorials.
6
1, 1, 2, 96, 31850496, 2524286414780230533120, 1189172215782988266980141580906985588465965465600000
OFFSET
0,3
COMMENTS
In general for k-th level factorials a(n) =Product of first n (k-1)-th level factorials =Product[i^C(n-i+k-1,n-i)] over 1<=i<=n.
FORMULA
a(n) =a(n-1)*A057527(n) =Product[i^A000292(n-i+4)] over 1<=i<=n.
a(n) ~ exp(25/144 - 109*n/144 - 35*n^2/24 - 379*n^3/432 - 125*n^4/576 - 137*n^5/7200 + (35 + 30*n + 6*n^2)*Zeta(3)/(96*Pi^2) - Zeta(5)/(32*Pi^4) + (5+2*n)*Zeta'(-3)/12) * n^((5+2*n)*(19/288 + 25*n/144 + 5*n^2/36 + n^3/24 + n^4/240)) * (2*Pi)^((n+1)*(n+2)*(n+3)*(n+4)/48) / A^((5+2*n)*(5 + 5*n + n^2)/12), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-3) = A259068 = 0.00537857635777430114441697421... and A = A074962 = 1.282427129100622636875... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 24 2015
MATHEMATICA
Table[Product[i^Binomial[n-i+4, 4], {i, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Jul 24 2015 *)
Nest[FoldList[Times, #]&, Range[0, 10]!, 4] (* Harvey P. Dale, Dec 15 2021 *)
CROSSREFS
Cf. A000142, A000178, A055462, A057527, A260404 for first, second, third, fourth and sixth level factorials.
Sequence in context: A091810 A344662 A165642 * A346565 A224986 A164335
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Sep 02 2000
STATUS
approved