login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164335
Quintic recurrence sequence a(0) = 1, a(n) = n*a(n-1)^5.
1
1, 1, 2, 96, 32614907904, 184523119031305377426211669050277696887837070322565120
OFFSET
0,3
COMMENTS
Number of different orderings for n-input trees in a Free Quinary Decision Diagram.
a(7) onward have more than 1000 digits. - G. C. Greubel, Sep 14 2017
LINKS
FORMULA
a(0) = 1, a(n) = n*a(n-1)^5.
MATHEMATICA
nxt[{n_, a_}] := {n + 1, (n + 1) a^5}; NestList[nxt, {0, 1}, 5][[All, 2]] (* G. C. Greubel, Sep 14 2017 *)
PROG
(PARI) a(n) = if (n==0, 1, n*a(n-1)^5); \\ Michel Marcus, Sep 14 2017
CROSSREFS
Quintic extension of A052129, A123851 and A164334.
Sequence in context: A057528 A346565 A224986 * A132206 A139884 A297423
KEYWORD
nonn
AUTHOR
David Willingham (D.Willingham(AT)wmin.ac.uk), Aug 13 2009
STATUS
approved