login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059978
a(n) = binomial(n+2,n)^6.
4
1, 729, 46656, 1000000, 11390625, 85766121, 481890304, 2176782336, 8303765625, 27680640625, 82653950016, 225199600704, 567869252041, 1340095640625, 2985984000000, 6327518887936, 12827693806929, 25002110044521, 47045881000000, 85766121000000, 151939915084881
OFFSET
0,2
COMMENTS
Number of 6-dimensional cage assemblies.
REFERENCES
Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.
LINKS
Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
G.f.: (x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 +2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1-x)^13. - Colin Barker, Jul 09 2012
G.f.: 6F5([3,3,3,3,3,3], [1,1,1,1,1], z). - Benedict W. J. Irwin, Mar 14 2016
a(n) = (1/16)*( 3*S(7,n+1) + 10*S(9,n+1) + 3*S(11,n+1) ), where S(r,n) = Sum_{k = 1..n} k^r. Cf. A059977 and A059980. - Peter Bala, Jul 02 2019
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 2688*Pi^2 + 448*Pi^4/15 + 128*Pi^6/945 - 29568.
Sum_{n>=0} (-1)^n/a(n) = 29568 - 32256*log(2) - 5376*zeta(3) - 720*zeta(5). (End)
MAPLE
with (combinat):seq(mul(stirling2(n+1, n), k=1..6), n=1..18); # Zerinvary Lajos, Dec 14 2007
MATHEMATICA
m = 6; Table[n^m (n + 1)^m/2^m, {n, 1, 24}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Mar 06 2001
EXTENSIONS
Better definition from Zerinvary Lajos, May 23 2006
STATUS
approved