OFFSET
0,2
COMMENTS
a(n) is the number of ordered pairs of lattice points (vectors in R^2 with integer coordinates) that are in or on a square centered at the origin with side length 2*n. - Geoffrey Critzer, Apr 20 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
FORMULA
From Wolfdieter Lang, Mar 12 2017: (Start)
G.f.: (1+76*x+230*x^2+76*x^3+x^4)/(1-x)^5; see row n=5 of A060187.
E.g.f.: (1 + 80*x + 232*x^2 + 128*x^3 + 16*x^4)*exp(x); see row n=4 of A154537. (End)
Sum_{n>=0} 1/a(n) = Pi^4/96 (A300707). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = (cos(Pi/sqrt(2)) + cosh(Pi/sqrt(2)))/2.
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(Pi/2)/8. (End)
EXAMPLE
a(1) = 81 because there are 9 lattice points in or on the 2 x 2 square centered at the origin, so there are 9*9 =81 ordered pairs. - Geoffrey Critzer, Apr 20 2013
MATHEMATICA
Table[(2n+1)^4, {n, 0, 25}] (* Geoffrey Critzer, Apr 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 81, 625, 2401, 6561}, 30] (* Harvey P. Dale, Mar 24 2020 *)
PROG
(Magma) [(2*n+1)^4: n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
(PARI) vector(40, n, n--; (2*n+1)^4) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved