login
A288091
Decimal expansion of m(4) = Sum_{n>=0} 1/n!!!!, the 4th reciprocal multifactorial constant.
10
3, 4, 8, 5, 9, 4, 4, 9, 7, 7, 4, 5, 3, 5, 5, 7, 7, 4, 5, 2, 1, 8, 8, 0, 9, 0, 4, 4, 0, 4, 6, 4, 0, 4, 7, 9, 5, 0, 9, 2, 6, 8, 2, 3, 2, 0, 8, 8, 1, 9, 6, 9, 4, 0, 7, 6, 4, 7, 2, 4, 9, 9, 9, 8, 1, 3, 1, 6, 1, 3, 1, 7, 2, 2, 9, 0, 0, 5, 6, 6, 2, 9, 6, 4, 0, 2, 2, 1, 4, 4, 6, 9, 7, 5, 9, 8, 6, 0, 1, 8, 6, 8, 5, 9
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Reciprocal Multifactorial Constant
FORMULA
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
EXAMPLE
3.485944977453557745218809044046404795092682320881969407647249998...
MATHEMATICA
m[4] = (1/4)*E^(1/4)*(4 + Sqrt[2]*(Gamma[1/4] - Gamma[1/4, 1/4]) + 2*(Sqrt[Pi] - Gamma[1/2, 1/4]) + 2*Sqrt[2]*(Gamma[3/4] - Gamma[3/4, 1/4])); RealDigits[m[4], 10, 104][[1]]
PROG
(PARI) default(realprecision, 100); (1/4)*exp(1/4)*(4+sqrt(2)*(gamma(1/4) - incgam(1/4, 1/4))+2*(sqrt(Pi) -incgam(1/2, 1/4))+2*sqrt(2)*(gamma(3/4) - incgam(3/4, 1/4))) \\ G. C. Greubel, Mar 28 2019
(Magma) SetDefaultRealField(RealField(100)); (1/4)*Exp(1/4)*(4 + Sqrt(2)* Gamma(1/4, 1/4) + 2*Gamma(1/2, 1/4) + 2*Sqrt(2)*Gamma(3/4, 1/4)) // G. C. Greubel, Mar 28 2019
(Sage) numerical_approx((1/4)*exp(1/4)*(4 + sqrt(2)*(gamma(1/4) - gamma_inc(1/4, 1/4)) + 2*(sqrt(pi) - gamma_inc(1/2, 1/4)) + 2*sqrt(2)*(gamma(3/4) - gamma_inc(3/4, 1/4))), digits=100) # G. C. Greubel, Mar 28 2019
CROSSREFS
Cf. A007662 (n!!!!), A143280 (m(2)), A288055 (m(3)), this sequence (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).
Sequence in context: A340533 A050274 A262951 * A057926 A078766 A336840
KEYWORD
nonn,cons
AUTHOR
STATUS
approved