login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288091
Decimal expansion of m(4) = Sum_{n>=0} 1/n!!!!, the 4th reciprocal multifactorial constant.
10
3, 4, 8, 5, 9, 4, 4, 9, 7, 7, 4, 5, 3, 5, 5, 7, 7, 4, 5, 2, 1, 8, 8, 0, 9, 0, 4, 4, 0, 4, 6, 4, 0, 4, 7, 9, 5, 0, 9, 2, 6, 8, 2, 3, 2, 0, 8, 8, 1, 9, 6, 9, 4, 0, 7, 6, 4, 7, 2, 4, 9, 9, 9, 8, 1, 3, 1, 6, 1, 3, 1, 7, 2, 2, 9, 0, 0, 5, 6, 6, 2, 9, 6, 4, 0, 2, 2, 1, 4, 4, 6, 9, 7, 5, 9, 8, 6, 0, 1, 8, 6, 8, 5, 9
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Reciprocal Multifactorial Constant
FORMULA
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
EXAMPLE
3.485944977453557745218809044046404795092682320881969407647249998...
MATHEMATICA
m[4] = (1/4)*E^(1/4)*(4 + Sqrt[2]*(Gamma[1/4] - Gamma[1/4, 1/4]) + 2*(Sqrt[Pi] - Gamma[1/2, 1/4]) + 2*Sqrt[2]*(Gamma[3/4] - Gamma[3/4, 1/4])); RealDigits[m[4], 10, 104][[1]]
PROG
(PARI) default(realprecision, 100); (1/4)*exp(1/4)*(4+sqrt(2)*(gamma(1/4) - incgam(1/4, 1/4))+2*(sqrt(Pi) -incgam(1/2, 1/4))+2*sqrt(2)*(gamma(3/4) - incgam(3/4, 1/4))) \\ G. C. Greubel, Mar 28 2019
(Magma) SetDefaultRealField(RealField(100)); (1/4)*Exp(1/4)*(4 + Sqrt(2)* Gamma(1/4, 1/4) + 2*Gamma(1/2, 1/4) + 2*Sqrt(2)*Gamma(3/4, 1/4)) // G. C. Greubel, Mar 28 2019
(Sage) numerical_approx((1/4)*exp(1/4)*(4 + sqrt(2)*(gamma(1/4) - gamma_inc(1/4, 1/4)) + 2*(sqrt(pi) - gamma_inc(1/2, 1/4)) + 2*sqrt(2)*(gamma(3/4) - gamma_inc(3/4, 1/4))), digits=100) # G. C. Greubel, Mar 28 2019
CROSSREFS
Cf. A007662 (n!!!!), A143280 (m(2)), A288055 (m(3)), this sequence (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)), A288096 (m(9)).
Sequence in context: A340533 A050274 A262951 * A378706 A057926 A078766
KEYWORD
nonn,cons
AUTHOR
STATUS
approved