login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378706
Array read by ascending antidiagonals: A(n,k) is the total semi-perimeter of n-Fibonacci polyominoes with k columns, where k > 0.
3
3, 4, 8, 5, 10, 16, 6, 12, 25, 33, 7, 14, 29, 54, 63, 8, 16, 33, 69, 118, 119, 9, 18, 37, 77, 152, 251, 219, 10, 20, 41, 85, 177, 335, 521, 398, 11, 22, 45, 93, 193, 390, 727, 1071, 714, 12, 24, 49, 101, 209, 433, 856, 1557, 2176, 1269, 13, 26, 53, 109, 225, 465, 948, 1859, 3297, 4380, 2237
OFFSET
2,1
LINKS
Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See page 10.
FORMULA
A(n, k) = [y^k] (n*(1 - y)*y*(1 - 2*y - 2*y^n +3*y^(n+1)) - y*(1 - y^n)*(-1 + y - y^2 + y^(n+2)))/((1 - y)*(1 - 2*y + y^(n+1))^2).
EXAMPLE
The array begins as:
3, 8, 16, 33, 63, 119, 219, 398, 714, 1269, ...
4, 10, 25, 54, 118, 251, 521, 1071, 2176, 4380, ...
5, 12, 29, 69, 152, 335, 727, 1557, 3297, 6931, ...
6, 14, 33, 77, 177, 390, 856, 1859, 4001, 8545, ...
7, 16, 37, 85, 193, 433, 948, 2065, 4463, 9581, ...
...
MATHEMATICA
A[n_, k_]:=SeriesCoefficient[(n(1-y)y(1-2y-2y^n+3y^(n+1))-y(1-y^n)(-1+y-y^2+y^(n+2)))/((1-y)(1-2y+y^(n+1))^2), {y, 0, k}]; Table[A[n-k+1, k], {n, 2, 12}, {k, n-1}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl,new
AUTHOR
Stefano Spezia, Dec 05 2024
STATUS
approved