login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378701
Number of minimal edge covers in the n-Plummer-Toft graph.
1
25, 66, 181, 456, 1075, 2579, 6082, 14414, 34450, 82895, 201315, 492855, 1215426, 3016505, 7526261, 18860558, 47431375, 119619948, 302351431, 765563707, 1941079274, 4926790178, 12515217136, 31811484793, 80897818405, 205801073727, 523695045908, 1332908173773
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Minimal Edge Cover.
Eric Weisstein's World of Mathematics, Plummer-Toft Graph.
Index entries for linear recurrences with constant coefficients, signature (4,1,-12,-15,24,49,6,-73,-76,5,80,72,14,-30,-34,-19,-6,-1).
FORMULA
a(n) = 4*a(n-1)+a(n-2)-12*a(n-3)-15*a(n-4)+24*a(n-5)+49*a(n-6)+6*a(n-7)-73*a(n-8)-76*a(n-9)+5*a(n-10)+80*a(n-11)+72*a(n-12)+14*a(n-13)-30*a(n-14)-34*a(n-15)-19*a(n-16)-6*a(n-17)-a(n-18). - Eric W. Weisstein, Dec 09 2024
G.f.: x*(25-34*x-108*x^2-34*x^3+237*x^4+385*x^5+69*x^6-481*x^7-599*x^8-162*x^9+280*x^10+235*x^11-101*x^12-322*x^13-285*x^14-146*x^15-44*x^16-7*x^17)/((-1+x^2+x^3)^3*(-1+x+x^2+x^3)^2*(-1+2*x+x^2+x^3)). - Eric W. Weisstein, Dec 09 2024
MATHEMATICA
LinearRecurrence[{4, 1, -12, -15, 24, 49, 6, -73, -76, 5, 80, 72, 14, -30, -34, -19, -6, -1}, {25, 66, 181, 456, 1075, 2579, 6082, 14414, 34450, 82895, 201315, 492855, 1215426, 3016505, 7526261, 18860558, 47431375, 119619948}, 20] (* Eric W. Weisstein, Dec 09 2024 *)
CoefficientList[Series[(25 - 34 x - 108 x^2 - 34 x^3 + 237 x^4 + 385 x^5 + 69 x^6 - 481 x^7 - 599 x^8 - 162 x^9 + 280 x^10 + 235 x^11 - 101 x^12 - 322 x^13 - 285 x^14 - 146 x^15 - 44 x^16 - 7 x^17)/((-1 + x^2 + x^3)^3 (-1 + x + x^2 + x^3)^2 (-1 + 2 x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 09 2024 *)
CROSSREFS
Sequence in context: A211462 A350233 A278855 * A137186 A109676 A223888
KEYWORD
nonn,easy,new
AUTHOR
Eric W. Weisstein, Dec 04 2024
EXTENSIONS
a(8) and beyond from Christian Sievers, Dec 08 2024
STATUS
approved