login
A278855
T(n,k)=Number of nXk 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly three mistakes.
8
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 25, 66, 25, 0, 1, 239, 1348, 1348, 239, 1, 8, 1486, 15066, 30772, 15066, 1486, 8, 36, 7072, 118158, 449677, 449677, 118158, 7072, 36, 120, 27828, 731444, 4950399, 9317846, 4950399, 731444, 27828, 120, 330, 94720, 3813048
OFFSET
1,12
COMMENTS
Table starts
...0.....0........0..........0............0..............1................8
...0.....0........1.........25..........239...........1486.............7072
...0.....1.......66.......1348........15066.........118158...........731444
...0....25.....1348......30772.......449677........4950399.........44571591
...0...239....15066.....449677......9317846......154090507.......2167109763
...1..1486...118158....4950399....154090507.....4026240722......92891826961
...8..7072...731444...44571591...2167109763....92891826961....3637198028018
..36.27828..3813048..344302564..26799758534..1935392159582..131770344218055
.120.94720.17413532.2353207764.297417275848.36831668321915.4438698421228261
LINKS
FORMULA
Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 14]
k=3: [polynomial of degree 27]
k=4: [polynomial of degree 52]
k=5: [polynomial of degree 101]
EXAMPLE
Some solutions for n=4 k=4
..1..0..1..0. .1..1..1..0. .1..0..0..0. .1..0..0..0. .1..1..1..1
..0..0..1..0. .0..1..1..0. .1..0..1..0. .1..0..1..0. .0..1..0..0
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..1. .1..1..1..0
..1..0..1..1. .0..1..0..1. .0..1..0..0. .1..0..0..0. .0..1..1..1
CROSSREFS
Column 1 is A000580(n+1).
Sequence in context: A350207 A211462 A350233 * A137186 A109676 A223888
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 29 2016
STATUS
approved