OFFSET
3,7
LINKS
Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See page 9.
FORMULA
T(n, k) = [x^n] 1/(1 - Sum_{i=1..k} x^((k+i)*(k-i+1)/2) ).
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 0, 1;
2, 1, 0, 1;
2, 2, 0, 0, 1;
3, 0, 1, 0, 0, 1;
4, 2, 1, 0, 0, 0, 1;
5, 3, 1, 1, 0, 0, 0, 1;
7, 1, 1, 1, 0, 0, 0, 0, 1;
9, 5, 2, 0, 1, 0, 0, 0, 0, 1;
12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1;
...
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[1/(1-Sum[x^((k+i)(k-i+1)/2), {i, k}]), {x, 0, n}]; Table[T[n, k], {n, 2, 14}, {k, 2, n}]//Flatten
CROSSREFS
KEYWORD
AUTHOR
Stefano Spezia, Dec 05 2024
STATUS
approved