login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378716
Triangle read by rows: T(n,k) is the number of k-Fibonacci polyominoes with an area of n, with k > 1.
3
1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 3, 0, 1, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 5, 3, 1, 1, 0, 0, 0, 1, 7, 1, 1, 1, 0, 0, 0, 0, 1, 9, 5, 2, 0, 1, 0, 0, 0, 0, 1, 12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1, 16, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 1, 21, 10, 3, 3, 0, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
3,7
LINKS
Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See page 9.
FORMULA
T(n, k) = [x^n] 1/(1 - Sum_{i=1..k} x^((k+i)*(k-i+1)/2) ).
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 0, 1;
2, 1, 0, 1;
2, 2, 0, 0, 1;
3, 0, 1, 0, 0, 1;
4, 2, 1, 0, 0, 0, 1;
5, 3, 1, 1, 0, 0, 0, 1;
7, 1, 1, 1, 0, 0, 0, 0, 1;
9, 5, 2, 0, 1, 0, 0, 0, 0, 1;
12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1;
...
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[1/(1-Sum[x^((k+i)(k-i+1)/2), {i, k}]), {x, 0, n}]; Table[T[n, k], {n, 2, 14}, {k, 2, n}]//Flatten
CROSSREFS
Cf. A079957 (k=3), A182097 (k=2), A378704, A378706, A378707.
Sequence in context: A080941 A346705 A177405 * A362421 A323302 A374212
KEYWORD
nonn,tabl,new
AUTHOR
Stefano Spezia, Dec 05 2024
STATUS
approved