OFFSET
1,4
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The a(900) = 12 matrix-arrangements of (3,3,2,2,1,1):
[1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
[3 2 1] [3 1 2] [2 3 1] [2 1 3] [1 3 2] [1 2 3]
.
[1 3] [1 3] [2 2] [2 2] [3 1] [3 1]
[2 2] [3 1] [1 3] [3 1] [1 3] [2 2]
[3 1] [2 2] [3 1] [1 3] [2 2] [1 3]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
Table[Length[Select[ptnmats[n], And[SameQ@@Total/@#, SameQ@@Total/@Transpose[#]]&]], {n, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 13 2019
STATUS
approved