OFFSET
0,3
COMMENTS
Rectangles must be of size m X k where m, k are divisors of n and mk <= n. This implies that a(p) = 2 for p prime, since the only allowable rectangles must be of size 1 X 1 corresponding to the partition (p), or 1 X p or p X 1 corresponding to the partition (1,1,...,1). Similarly, a(p^2) = 3 since the allowable rectangles must be of sizes 1 X 1 (partition (p^2)), 1 X p or p X 1 (partition (p,p,...,p)), 1 X p^2, p^2 X 1 and p X p (partition (1,1,...,1)). - Chai Wah Wu, Jan 14 2019
FORMULA
a(p) = 2 and a(p^2) = 3 for p prime (see comment). - Chai Wah Wu, Jan 14 2019
EXAMPLE
The a(8) = 5 integer partitions are (8), (44), (2222), (3311), (11111111).
The a(12) = 11 integer partitions (C = 12):
(C)
(66)
(444)
(3333)
(4422)
(5511)
(222222)
(332211)
(22221111)
(222111111)
(111111111111)
For example, the arrangements of (222111111) are:
[1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
[1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
[2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), SameQ@@Length/@#&];
Table[Length[Select[IntegerPartitions[n], !Select[ptnmats[Times@@Prime/@#], And[SameQ@@Total/@#, SameQ@@Total/@Transpose[#]]&]=={}&]], {n, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jan 13 2019
EXTENSIONS
a(17)-a(53) from Chai Wah Wu, Jan 15 2019
a(54)-a(59) from Chai Wah Wu, Jan 16 2019
STATUS
approved