login
A362421
Number of nonisomorphic vector spaces consisting of n elements.
1
1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0
OFFSET
2,3
COMMENTS
If n is a prime power p^k, then a vector space consisting of n elements has the form (F_(p^d))^(k/d) where d is a divisor of k.
LINKS
FORMULA
a(n) = a(p^k) = sigma_0(k) if n = p^k is a prime power, a(n) = 0 otherwise.
EXAMPLE
a(16) = 3 because 16=2^4 and 4 has 3 divisors.
PROG
(Sage)
def f(a):
if not a.is_prime_power(): return 0
else: return sigma(factor(a)[0][1], 0)
CROSSREFS
Sequence in context: A177405 A379110 A378716 * A323302 A374212 A303903
KEYWORD
nonn
AUTHOR
Philip Turecek, Apr 19 2023
STATUS
approved