login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of k-Fibonacci polyominoes with an area of n, with k > 1.
3

%I #10 Dec 06 2024 11:30:50

%S 1,1,1,1,0,1,2,1,0,1,2,2,0,0,1,3,0,1,0,0,1,4,2,1,0,0,0,1,5,3,1,1,0,0,

%T 0,1,7,1,1,1,0,0,0,0,1,9,5,2,0,1,0,0,0,0,1,12,5,1,1,1,0,0,0,0,0,1,16,

%U 3,2,0,0,1,0,0,0,0,0,1,21,10,3,3,0,1,0,0,0,0,0,0,1

%N Triangle read by rows: T(n,k) is the number of k-Fibonacci polyominoes with an area of n, with k > 1.

%H Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, <a href="https://arxiv.org/abs/2411.17812">Generating Trees and Fibonacci Polyominoes</a>, arXiv:2411.17812 [math.CO], 2024. See page 9.

%F T(n, k) = [x^n] 1/(1 - Sum_{i=1..k} x^((k+i)*(k-i+1)/2) ).

%e The triangle begins as:

%e 1;

%e 1, 1;

%e 1, 0, 1;

%e 2, 1, 0, 1;

%e 2, 2, 0, 0, 1;

%e 3, 0, 1, 0, 0, 1;

%e 4, 2, 1, 0, 0, 0, 1;

%e 5, 3, 1, 1, 0, 0, 0, 1;

%e 7, 1, 1, 1, 0, 0, 0, 0, 1;

%e 9, 5, 2, 0, 1, 0, 0, 0, 0, 1;

%e 12, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1;

%e ...

%t T[n_, k_]:=SeriesCoefficient[1/(1-Sum[x^((k+i)(k-i+1)/2), {i, k}]), {x, 0, n}]; Table[T[n, k], {n, 2, 14}, {k, 2,n}]//Flatten

%Y Cf. A079957 (k=3), A182097 (k=2), A378704, A378706, A378707.

%K nonn,tabl,new

%O 3,7

%A _Stefano Spezia_, Dec 05 2024