login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378717
Products of 4 distinct primes numbers (or tetraprimes) that are deficient.
2
1155, 1365, 1785, 1995, 2145, 2415, 2618, 2805, 2926, 3003, 3045, 3094, 3135, 3255, 3315, 3458, 3542, 3705, 3795, 3885, 3910, 3927, 4186, 4305, 4370, 4389, 4466, 4485, 4515, 4522, 4641, 4774, 4785, 4810, 4845, 4862, 4930, 4935, 5005, 5115, 5187, 5270, 5278, 5313, 5330, 5434, 5474, 5510, 5565, 5590
OFFSET
1,1
FORMULA
a(n) ~ A046390(n) ~ A046386(n) ~ A014613(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, Dec 06 2024
EXAMPLE
1155 is a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+11+15+21+33+35+55+77+105+165+231+385=1149).
1365 is a term because 1365=3*5*7*13 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+13+15+21+35+39+65+91+105+195+273+455=1323).
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) < 2]; Select[Range[6000], q] (* Amiram Eldar, Dec 05 2024 *)
PROG
(PARI) catpr(~v, lim, mult, startAt)=forprime(p=startAt, lim\mult, listput(v, mult*p))
list(lim)=my(v=List()); forprime(p=3, sqrtnint(lim\=1, 4), forprime(q=p+2, sqrtnint(lim\p, 3), forprime(r=q+2, sqrtint(lim\p\q), catpr(~v, lim, p*q*r, r+2)))); forprime(p=11, sqrtnint(lim\2, 3), forprime(q=13, sqrtint(lim\2\p), catpr(~v, lim, 2*p*q, q+2))); forprime(p=13, sqrtint(lim\14), catpr(~v, lim, 14*p, p+2)); forprime(p=19, sqrtint(lim\10), catpr(~v, lim, 10*p, p+2)); catpr(~v, lim, 154, 17); catpr(~v, lim, 110, 59); catpr(~v, lim, 130, 37); catpr(~v, lim, 170, 23); Set(v) \\ Charles R Greathouse IV, Dec 06 2024
CROSSREFS
Intersection of A005100 and A046386. A046390 is a subsequence.
Cf. A378480.
Sequence in context: A020382 A185689 A309413 * A046390 A234498 A147577
KEYWORD
nonn
AUTHOR
Massimo Kofler, Dec 05 2024
STATUS
approved