login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Products of 4 distinct primes numbers (or tetraprimes) that are deficient.
0

%I #11 Dec 06 2024 16:31:40

%S 1155,1365,1785,1995,2145,2415,2618,2805,2926,3003,3045,3094,3135,

%T 3255,3315,3458,3542,3705,3795,3885,3910,3927,4186,4305,4370,4389,

%U 4466,4485,4515,4522,4641,4774,4785,4810,4845,4862,4930,4935,5005,5115,5187,5270,5278,5313,5330,5434,5474,5510,5565,5590

%N Products of 4 distinct primes numbers (or tetraprimes) that are deficient.

%F a(n) ~ A046390(n) ~ A046386(n) ~ A014613(n) ~ 6n log n / (log log n)^3. - _Charles R Greathouse IV_, Dec 06 2024

%e 1155 is a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+11+15+21+33+35+55+77+105+165+231+385=1149).

%e 1365 is a term because 1365=3*5*7*13 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+13+15+21+35+39+65+91+105+195+273+455=1323).

%t q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) < 2]; Select[Range[6000], q] (* _Amiram Eldar_, Dec 05 2024 *)

%o (PARI) catpr(~v, lim, mult, startAt)=forprime(p=startAt,lim\mult, listput(v,mult*p))

%o list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), forprime(r=q+2,sqrtint(lim\p\q), catpr(~v,lim,p*q*r, r+2)))); forprime(p=11,sqrtnint(lim\2,3), forprime(q=13,sqrtint(lim\2\p), catpr(~v, lim, 2*p*q, q+2))); forprime(p=13,sqrtint(lim\14), catpr(~v,lim,14*p,p+2)); forprime(p=19,sqrtint(lim\10), catpr(~v,lim, 10*p, p+2)); catpr(~v, lim, 154, 17); catpr(~v, lim, 110, 59); catpr(~v, lim, 130, 37); catpr(~v, lim, 170, 23); Set(v) \\ _Charles R Greathouse IV_, Dec 06 2024

%Y Intersection of A005100 and A046386. A046390 is a subsequence.

%Y Cf. A378480.

%K nonn

%O 1,1

%A _Massimo Kofler_, Dec 05 2024