login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378713
Decimal expansion of the volume of a disdyakis dodecahedron with unit shorter edge length.
4
1, 6, 2, 8, 8, 9, 1, 9, 0, 8, 2, 9, 2, 3, 5, 2, 5, 0, 3, 8, 5, 0, 3, 1, 2, 2, 5, 0, 3, 6, 1, 9, 4, 4, 1, 0, 4, 5, 9, 9, 6, 7, 9, 7, 4, 4, 7, 3, 5, 7, 0, 2, 7, 2, 1, 7, 2, 4, 8, 7, 2, 2, 8, 3, 5, 7, 8, 3, 7, 0, 1, 3, 4, 1, 5, 1, 8, 7, 0, 4, 9, 5, 9, 7, 6, 5, 0, 6, 9, 2
OFFSET
2,2
COMMENTS
The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).
LINKS
Eric Weisstein's World of Mathematics, Disdyakis Dodecahedron.
FORMULA
Equals sqrt(3*(2194 + 1513*sqrt(2)))/7 = sqrt(6582 + 4539*A002193)/7.
EXAMPLE
16.288919082923525038503122503619441045996797447357...
MATHEMATICA
First[RealDigits[Sqrt[6582 + 4539*Sqrt[2]]/7, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "Volume"], 10, 100]]
CROSSREFS
Cf. A378712 (surface area), A378714 (inradius), A378393 (midradius), A378715 (dihedral angle).
Cf. A377344 (volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length).
Cf. A002193.
Sequence in context: A259931 A333350 A332092 * A021163 A114866 A248270
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 07 2024
STATUS
approved