login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378712
Decimal expansion of the surface area of a disdyakis dodecahedron with unit shorter edge length.
4
3, 2, 0, 6, 6, 7, 3, 4, 0, 1, 0, 5, 3, 1, 9, 4, 4, 4, 1, 3, 3, 4, 9, 8, 2, 3, 8, 7, 4, 8, 9, 5, 7, 2, 3, 4, 6, 2, 8, 6, 3, 4, 9, 5, 8, 5, 1, 5, 5, 3, 2, 5, 4, 5, 6, 0, 5, 3, 0, 9, 5, 7, 9, 9, 5, 3, 6, 2, 4, 8, 9, 0, 0, 6, 0, 2, 1, 1, 0, 7, 4, 3, 5, 3, 1, 8, 1, 5, 7, 1
OFFSET
2,1
COMMENTS
The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron).
LINKS
Eric Weisstein's World of Mathematics, Disdyakis Dodecahedron.
FORMULA
Equals (6/7)*sqrt(783 + 436*sqrt(2)) = (6/7)*sqrt(783 + 436*A002193).
EXAMPLE
32.066734010531944413349823874895723462863495851553...
MATHEMATICA
First[RealDigits[6/7*Sqrt[783 + 436*Sqrt[2]], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["DisdyakisDodecahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A378713 (volume), A378714 (inradius), A378393 (midradius), A378715 (dihedral angle).
Cf. A377343 (surface area of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length).
Cf. A002193.
Sequence in context: A049780 A159584 A257653 * A246834 A319730 A262294
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 06 2024
STATUS
approved