login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288096
Decimal expansion of m(9) = Sum_{n>=0} 1/n!9, the 9th reciprocal multifactorial constant.
10
4, 0, 8, 1, 3, 7, 5, 5, 2, 0, 1, 6, 8, 8, 9, 8, 5, 4, 4, 0, 7, 1, 1, 0, 5, 1, 4, 6, 6, 0, 9, 6, 1, 0, 6, 9, 4, 6, 2, 6, 4, 1, 0, 0, 7, 7, 3, 1, 8, 6, 0, 7, 5, 8, 8, 4, 3, 4, 8, 5, 1, 7, 5, 1, 6, 7, 4, 9, 3, 4, 8, 7, 6, 3, 9, 0, 3, 3, 3, 5, 9, 9, 2, 1, 0, 5, 4, 2, 4, 2, 3, 0, 5, 7, 2, 0, 3, 5, 9, 0, 7, 4
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Reciprocal Multifactorial Constant
FORMULA
m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
EXAMPLE
4.08137552016889854407110514660961069462641007731860758843485175...
MATHEMATICA
m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[9], 10, 102][[1]]
PROG
(PARI) default(realprecision, 105); (1/9)*exp(1/9)*(9 + sum(k=1, 8, 9^(k/9)*(gamma(k/9) - incgam(k/9, 1/9)))) \\ G. C. Greubel, Mar 28 2019
(Magma) SetDefaultRealField(RealField(105)); (1/9)*Exp(1/9)*(9 + (&+[9^(k/9)*Gamma(k/9, 1/9): k in [1..8]])); // G. C. Greubel, Mar 28 2019
(Sage) numerical_approx((1/9)*exp(1/9)*(9 + sum(9^(k/9)*(gamma(k/9) - gamma_inc(k/9, 1/9)) for k in (1..8))), digits=105) # G. C. Greubel, Mar 28 2019
CROSSREFS
Cf. A114806 (n!9), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), A288095 (m(8)) this sequence (m(9)).
Sequence in context: A378617 A304440 A073467 * A021249 A010638 A123961
KEYWORD
nonn,cons
AUTHOR
STATUS
approved